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Abstract
Using a higher order derivative with respect to the parameter, we will give
lower bounds for variance of unbiased estimators in quantum estimation
problems. This is a quantum version of the Bhattacharyya inequality in the
classical statistical estimation. Because of the non-commutativity of operator
multiplication, we obtain three different types of lower bounds: Type S, Type R
and Type L. If the parameter is a real number, the Type S bound is useful. If the
parameter is complex, the Type R and L bounds are useful. As an application,
we will consider estimation of polynomials of the complex amplitude of the
quantum Gaussian state. For the case where the amplitude lies in the real axis,
a uniformly optimum estimator for the square of the amplitude will be derived
using the Type S bound. It will be shown that there is no unbiased estimator
uniformly optimum as a polynomial of annihilation and/or creation operators
for the cube of the amplitude. For the case where the amplitude does not
necessarily lie in the real axis, uniformly optimum estimators for holomorphic,
antiholomorphic and real-valued polynomials of the amplitude will be derived.
Those estimators for the holomorphic and real-valued cases attain the Type R
bound, and those for the antiholomorphic and real-valued cases attain the Type
L bound. This paper clarifies what is the best method to measure the energy of
a laser.

PACS numbers: 03.65.Ta, 03.67.−a
Mathematics Subject Classification: 81P15, 94A15

1. Introduction

Quantum estimation is an important theory in quantum information [7, 10]. It is not merely
useful for many purposes, for example, evaluation of realized quantum information processing,
but also is a fundamental problem in its own right. In this theory, we consider an optimization
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problem of measurements estimating unknown state, with respect to a risk function under
appropriate restriction. A typical case, we adopt in this paper, is the minimization of variance
under unbiasedness condition. What physicists call an observable is an unbiased estimator,
and the variance is equal to the mean square error if the estimator is unbiased.

It has been known that the quantum Cramér–Rao inequality gives a lower bound based
on first-order derivative and the Schwartz’s inequality [7, 10, 18]. Although there is only
one Cramér–Rao inequality for classical statistical estimation [12], there are several different
inequalities due to the non-commutativity of operator multiplication: SLD-type, RLD-type
and LLD-type inequalities formulated by operators respectively called symmetric logarithmic
derivative, right logarithmic derivative and left logarithmic derivative [11]. Yuen and Lax
[18] showed that, for the quantum Gaussian state model, the homodyne and heterodyne
measurement, respectively, uniformly attains the SLD-type bound for the one-parameter
model and the RLD-type bound for the two-parameter model. Nagaoka [14] showed that
the SLD bound can be locally attained for all one-parameter models. For asymptotic settings,
there are many arguments on the quantum Cramér–Rao bound [1, 5].

For the classical estimation problems, Bhattacharyya [2] has improved the Cramér–Rao
inequality extending the order of the derivative. For the classical Gaussian distribution model
with unknown mean parameter θ , the uniformly optimum estimator for any polynomial g(θ)

is made by the Hermite polynomials, and it attains the classical Bhattacharyya bound. See
[15, 16] for details in classical cases. In the quantum estimation theory, Brody and Hughston
[3, 4] defined a Bhattacharyya-type lower bound generalizing the SLD for pure states, and
they analysed asymptotic property.

In this paper, first, we will propose three quantum Bhattacharyya inequalities for mixed
quantum states with one real or complex parameter. Generalization of the SLD gives the
Type S lower bound for the real parameter case and generalization of RLD and LLD gives the
Type R and Type L bounds for the complex parameter case. Second, as the application, we
will consider the quantum Gaussian state model where the amplitude parameter θ is unknown.
If θ lies in the real axis, the uniformly optimum estimator for θ2 attaining the Type S bound
is a self-adjoint observable given as a superposition of the number counting operator and the
homodyne operator. This is realized by squeezing followed by the number counting. For
θ3, there is no uniformly optimum unbiased estimator written as a polynomial of the creation
and/or annihilation operators. If θ lies in the complex plane, we will present uniformly
optimum operators for polynomials g(θ) of θ and θ̄ (the conjugate). If g(θ) is holomorphic,
i.e., dg/dθ̄ = 0, then the optimum estimator is given by the heterodyne measurement and
it attains the Type R bound. If g(θ) is antiholomorphic, i.e., dg/dθ = 0, then the optimum
estimator is also given by the heterodyne measurement and it attains the Type L bound. If
g(θ) is real-valued, i.e., g(θ) = g(θ), the optimum estimator is given by some polynomials
of the annihilation/creation operators and it attains both Type R and Type L bounds.

In quantum optics, the Gaussian state is a simple model of laser whose complex amplitude
is fluctuated around θ ∈ C, and the energy of the laser is proportional to |θ |2. Using the Type
R and L inequalities, we will see that the counting measurement is optimum. If θ ∈ R is
previously known, the Type S inequality shows that a counting measurement after a squeezing
operation is optimum.

This paper is constructed as follows. In section 2, our problem will be formulated and a
known proposition of the quantum Cramér–Rao inequality will be shown. In section 3, new
theoretical results of quantum Bhattacharyya inequality will be presented. In section 4, our
theory will be applied to the quantum Gaussian state model. Appendix A is the proof for
section 3, and appendix B is that for section 4.

The author thanks the referees for useful comments.
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2. Set-up

Suppose that there is a quantum system with an unknown state. Consider a set of candidate
states {ρθ } for the system parameterized by θ ∈ �. In this paper, it is assumed that these
density operators are invertible and that � = R or � = C. We will use ζ as the parameter
instead of θ when we need to remark that the parameter may not be a real number. Our
interest is to estimate the true value of g(θ), where g : � → � is a smooth function. Since
the probabilistic error is inevitable, we consider an optimization problem of estimation under
some restriction.

An estimator M for g(θ) is a positive-operator-valued measure (POVM) taking
measurement outcomes in �. (In a strict definition, an estimator should take measurement
outcomes in g(�) ⊇ �, but, for theoretical convenience, we adopt the weaker definition in
this paper.)

The expectation (=average=mean) of M is

E[M] :=
∫

ω∈�

ω Tr[ρθM(dω)].

If E[M] = g(θ) for any θ ∈ �,M is said to be unbiased. We adopt the variance of M as the
risk function; the variance is defined, in this paper, as

V [M] :=
∫

ω∈�

|ω − E[M]|2 Tr[ρθM(dω)]

=
∫

ω∈�

(ω − E[M])(ω − E[M]) Tr[ρθM(dω)].

An unbiased estimator with the minimum variance among all unbiased estimators at a point
θ ∈ � is said to be locally optimum at θ . If an unbiased estimator is optimum at any θ ∈ �,
it is said to be uniformly optimum.

The lower bound for the variance of unbiased estimators has been given by using the
Schwartz’s inequality and the first-order derivative with respect to θ . This bound is called the
quantum Cramér–Rao inequality. See [7–11, 18] for the proof and related topics.

Proposition. Assume that � = R, the variance of any unbiased estimator M for g(θ) satisfies

V [M] � |g′(θ)|2/J S. (1)

If T := g′(θ)(J S)−1LS + g(θ) (A scalar x is identified with x times identity.) is free of the
parameter, then the projection-valued measure (PVM) taking measurement outcomes in R

given by the self-adjoint operator T is the uniformly optimum unbiased estimator for g(θ) and
the equality holds for (1).

Assume that � = C, the variance of any unbiased estimator M for g(ζ )(ζ ∈ �) satisfies

V [M] � |g′(ζ )|2/JR, (2)

V [M] � |g′(ζ̄ )|2/JL. (3)

If T := g′(ζ )(JR)−1LR + g(ζ ) is free of the parameter and if T is normal, i.e., T T † = T †T ,
then the PVM taking measurement outcomes in C given by the spectrum decomposition of T is
the uniformly optimum unbiased estimator for g(ζ ) and the equality holds for (2). Similarly,
if T := g′(ζ̄ )(J L)−1LL + g(ζ ) is free of the parameter and is normal, it is the uniformly
optimum unbiased estimator and the equality holds for (3).
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Here, J S, LS, JR, LR, JL and LL are defined as follows.

Definition of LS and J S . For the case � = R, let LS be a self-adjoint operator satisfying

d

dθ
ρθ = ρθL

S + LSρθ

2
, (4)

and then define J S as Tr[ρθ (L
S)2]. LS is called symmetric logarithmic derivative (SLD) and

J S is called SLD Fisher information.

Definition of LR,LL, JR and JL. For the case � = C, let LR and LL be operators satisfying

d

dζ̄
ρζ = ρζ L

R,
d

dζ
ρζ = LLρζ (5)

where ζ := x +
√−1y, d/dζ := (d/dx − √−1d/dy)/2 and d/dζ̄ := (d/dx +

√−1d/dy)/2
for real variables x and y. Then JR and JL are defined as Tr[ρζL

R(LR)†] and Tr[LLρζ (L
L)†].

LR is called right logarithmic derivative (RLD) and JR is called RLD Fisher information.
Similarly, LL is called left logarithmic derivative (LLD) and JL is LLD Fisher information.

The definitions of LS,LR and LL are not unique because equations (4) and (5) have
many solutions on a space where ρθ does not depend on θ . For example, the heterodyne
measurement for the Gaussian model is obtained in the form (JR)−1LR + θ (θ ∈ C) where LR

is a solution in an extended system with an ancilla state, while the homodyne measurement
(J S)−1LS + θ (θ ∈ R) needs no extension. In spite of the ambiguity of L·, the inner product
J · is uniquely determined.

When the sample size is finite, there is no unbiased estimators uniformly optimum except
for a few cases where the parameter space is flat with respect to the metric defined by J S [13].
When ρθ is not smooth with respect to θ , the difference instead of the derivative is useful [17].

There may be cases where the unbiasedness condition is so strict that no estimator is
unbiased, and where the variance (or the means square error) is not appropriate as the risk
geometrically. However, it is worth studying such problems with a view to gaining theoretical
insight.

3. Quantum Bhattacharyya inequality

The quantum Cramér–Rao inequality is generalized by using higher order derivative instead
of the first-order derivative.

3.1. Quantum Bhattacharyya inequality of Type S for the real parameter case

Consider the case � = R. Let LS
k := t (L1, L2, . . . , Lk) be a column vector of self-adjoint

operators satisfying

dk

dθk
ρθ = ρθLk + Lkρθ

2
. (6)

To simplify notation, we introduce a column vector Dk := t (d/dθ, . . . , dk/dθk) of
differential operators, and we write (6) as

Dk[ρθ ] = ρθL
S
k + LS

k ρθ

2
.

Let J S
k be a k × k matrix where the (i, j)th entry is

Ji,j := Tr[ρθLiLj ].
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The definition of J S
k is also simplified as J S

k = Trk×k

[
ρθL

S
k

t
(
LS

k

)]
where Trm×n[A] means

taking the trace of each entry of an m × n matrix A, namely,

Trm×n







A1,1 · · · A1,n

...
. . .

...

Am,1 · · · Am,n





 =




Tr[A1,1] · · · Tr[A1,n]
...

. . .
...

Tr[Am,1] · · · Tr[Am,n]


 .

Though the definition of LS
k is not unique for a system extension with a known ancilla state,

J S
k is uniquely determined.

Assume that J S
k is invertible. The quantum Bhattacharyya inequality of ‘Type S’ is given

as follows.

Theorem 1. If M is an unbiased estimator for g(θ), it holds that

V [M] � t (Dk[g(θ)])
(
J S

k

)−1
Dk[g(θ)]. (7)

Especially, if T := tDk[g(θ)]
(
J S

k

)−1
LS

k + g(θ) is free of the parameter, then the PVM M given
by the self-adjoint observable T is the uniformly optimum unbiased estimator and the equality
holds for (7).

See appendix A for the proof.

3.2. Quantum Bhattacharyya inequality of Type R and Type L for the complex parameter case

Consider the case � = C. Let DC
k be a column vector

DC
k :=

t( d

dζ
,

d

dζ̄
,

d2

dζ 2
,

d2

dζ dζ̄
,

d2

dζ̄ 2
, . . . ,

dk

dζ k
, . . . ,

dk

dζ k−l dζ̄ l
, . . . ,

dk

dζ̄ k

)
,

where

dm

dζ n dζ̄ m−n
:= 1

2m

(
d

dx
− √−1

d

dy

)n (
d

dx
+

√−1
d

dy

)m−n

.

The number of the entries is K := k(k + 3)/2. Define column vectors LR
k and LL

k of K
operators as the solutions to the equations

DC
k [ρζ ] = ρζ L

R
k , DC

k [ρζ ] = LL
k ρζ .

Let JR
k and JL

k be K × K matrices given by

JR
k := TrK×K

[
ρζL

R
k

(
LR

k

)†]
, J L

k := TrK×K

[
LL

k ρζ

(
LL

k

)†]
,

where 


A1,1 · · · A1,n

...
. . .

...

Am,1 · · · Am,n




†

:=




A
†
1,1 · · · A

†
m,1

...
. . .

...

A
†
1,n · · · A

†
m,n


 .

Applying this notation to DC
k , we define

DC
k

†
:=

(
d

dζ̄
,

d

dζ
,

d2

dζ̄ 2
,

d2

dζ dζ̄
,

d2

dζ 2
, . . . ,

dk

dζ̄ k
, . . . ,

dk

dζ ldζ̄ k−l
, . . . ,

dk

dζ k

)
.

The definitions of LR
k and LL

k are not unique due to the system extension with a known ancilla
state, but those of JR

k JL
k are unique.

The quantum Bhattacharyya inequalities of Type R and Type L are given as follows.
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Theorem 2. If M is an unbiased estimator for g(ζ ), then it holds that

V [M] � DC
k

†
[g(ζ )]

(
JR

k

)−1
DC

k [g(ζ̄ )], (8)

V [M] � DC
k

†
[g(ζ )]

(
JL

k

)−1
DC

k [g(ζ̄ )]. (9)

Especially, if T := DC
k

†
[g(ζ )]

(
JR

k

)−1
LR

k + g(ζ ) is free of the parameter and if T is normal,
then the PVM given by the spectrum decomposition of T is the uniformly optimum unbiased
estimator and the equality holds for (8). Similarly, if T := DC

k

†
[g(ζ )]

(
JL

k

)−1
LL

k + g(ζ ) is
free of the parameter, it is the uniformly optimum unbiased estimator and the equality holds
for (9).

See appendix A for the proof.

4. Application to the quantum Gaussian model

For a known constant N > 0 and an unknown parameter θ ∈ �, let

ρθ := 1

πN

∫
α∈C

exp

(
−|α − θ |2

N

)
|α〉〈α| d2α.

Here, d2α means dxdy where α = x +
√−1y, and |α〉 is the coherent vector of the complex

amplitude α := x +
√−1y, i.e.,

|α〉 := exp

(
−|α|2

2

) ∞∑
n=0

αn

√
n!

en

where {en}∞n=0 is the orthonormal system.
The quantum Gaussian model is a generalization of the classical model of Gaussian

distributions, where the probability density is given as

fθ (x) := 1√
2π

exp

(
− (x − θ)2

2

)
.

Here, θ ∈ R is unknown. In the classical estimation problem of θk , the kth Hermite polynomial
T (x) := (−1)k ex2/2(dk/dxk) e−x2/2 is the uniformly optimum unbiased estimator which
attains the classical Bhattacharyya lower bound.

For the quantum Gaussian model, we consider two models: the real Gaussian model
� = R and the complex Gaussian model � = C. For the real Gaussian model, we consider
two cases: g(θ) = θ2 and g(θ) = θ3. For g(θ) = θ2, the optimum estimator is given by
a PVM with measurement outcomes in �(= R � g(�) = {x | x � 0}). For g(θ) = θ3,
it will be shown that any unbiased estimator given by an observable as a polynomial of the
creation/annihilation operators cannot be uniformly optimum. We will identify a self-adjoint
operator with the PVM.

Theorem 3. Suppose that � = R.
If g(θ) = θ2, then the unbiased estimator

T = N(N + 1)

(2N + 1)2
(a2 + a†2) +

N2 + (N + 1)2

(2N + 1)2
a†a − N

N2 + (N + 1)2

(2N + 1)2
(10)

uniformly attains the Type S lower bound, so T is uniformly optimum. Here, a is the annihilation
operator satisfying en = √

nen−1 and aa† − adaga = I (identity).
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If g(θ) = θ3, no unbiased estimator of the polynomial form of the creation/annihilation
operators can be uniformly optimum.

See appendix B.1 for the proof.
The value g(θ) = θ2 may be measured by the counting measurement a†a-constant or

by the square of the homodyne measurement (a + a†)2-constant. This theorem says that the
optimum estimator is a superposition of these two measurements. We also note that this
optimum estimator is realized as the counting measurement b†b-constant after the following
squeezing operation on the system:(

a

a†

)
	→ 1√

2N + 1

(
N + 1 N

N N + 1

) (
a

a†

)
=:

(
b

b†

)
.

For the complex Gaussian model, we will consider the following three cases for a
polynomial g(ζ ) of ζ ∈ C:

holomorphic case: dg(ζ )/dζ̄ ≡ 0,
antiholomorphic case: dg(ζ )/dζ ≡ 0,
real-valued case: g(ζ ) ≡ g(ζ̄ ).

In each case, an optimal unbiased estimator will be presented by a PVM taking measurement
outcomes in C.

A PVM M taking outcomes in C will be described by a normal operator T, that is,
T T † = T †T and

T =
∫

ω∈C

ωM(dω).

Since E[M] = Tr[ρT ], it holds that

V [M] = Tr[ρθ (T − E[T ])(T − E[T ])†] = Tr[ρθ (T − E[T ])†(T − E[T ])].

See [6] for details on normality and subnormality of operators for quantum measurement.
For the holomorphic and antiholomorphic cases, we need to extend the system to describe

the normal operators. Let K be an ancilla system spanned by {fn}∞n=0, and let b be the
annihilation operator satisfying bfn = √

nfn−1 and bb† − b†b = 1. Namely, the original
annihilation operator a means a ⊗ I , and the new one b may represent I ⊗ a. The original
state ρζ is extended to ρζ ⊗ f0f

†
0 .

Theorem 4. Suppose that � = C and g(θ) is a polynomial of θ and θ̄ .
If g(θ) is holomorphic, the unbiased estimator

T = g(a + b†)

uniformly attains the Type R lower bound, so it is uniformly optimum.
If g(θ) is antiholomorphic, the unbiased estimator

T = ḡ(a† + b)

uniformly attains the Type L lower bound so it is uniformly optimum, where ḡ(z) := g(z).
If g(θ) is real-valued, the unbiased estimator

T =
∑
m,n

cm,n(N + 1)n
min(m,n)∑

r=0

(−1)min(m,n)−r

(
max(m, n)

min(m, n) − r

)

× min(m, n)!

r!

( a

N + 1

)r+max(0,n−m)

a†r+max(0,m−n)
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uniformly attains both Type R and Type L lower bounds so it is uniformly optimum, where
g(z) = ∑

m,n cm,nθ
mθ̄n.

See appendix B.2 for the proof.
For the holomorphic and antiholomorphic cases, the optimum estimators are realized

essentially by the heterodyne measurement, that is, the estimated values for g(a + b†) and
ḡ(a† + b) are both obtained by operating g(·) to the heterodyne outcome. Hence, they can
be simultaneously carried out. On the other hand, for the real-valued case, no ancilla system
is used so that it cannot be measured simultaneously with the holomorphic/antiholomorphic
cases.

For a real-valued case g(θ) = Re(θ)2, the optimum estimator is of the form (a + a†)2/4-
constant, i.e., the square of the homodyne measurement. This measurement does not commute
with that for g(θ) = θ2 (θ ∈ R) of theorem 3.

Appendix A. Proofs of theorems 1 and 2

The first lemma implies that, for any POVM estimator for g(θ), there is a PVM which has the
same expectation and a smaller variance.

Lemma 1. Assume that M is a POVM taking measurement outcomes in �. Let

T =
∫

ω∈�

ωM(dω).

Then, it holds that∫
ω∈�

|ω|2 Tr[ρθM(dω)] � Tr[ρθT T †], (A.1)

∫
ω∈�

|ω|2 Tr[ρθM(dω)] � Tr[ρθT
†T ]. (A.2)

Proof. The first formula (A.1) is obtained by∫
ω∈�

|ω|2 Tr[ρθM(dω)] − Tr[ρθT T †] = Tr

[
ρθ

∫
ω∈�

(ω − T )(ω̄ − T †)M(dω)

]
� 0.

Similarly, (A.2) is obtained by∫
ω∈�

|ω|2 Tr[ρθM(dω)] − Tr[ρθT
†T ] = Tr

[
ρθ

∫
ω∈�

(ω̄ − T †)(ω − T )M(dω)

]
� 0,

�

Therefore, for the proofs of theorems 1 and 2, it is sufficient to show that, for the case
� = R, if Tr[ρθT ] = g(θ) holds for any θ ∈ � then

Tr[ρθ(T − g(θ))2] = Tr[ρθT
2] − g(θ)2 � tDk[g(θ)]

(
J S

k

)−1
Dk[g(θ)],

and, for the case � = C, if Tr[ρζT ] = g(ζ ) and Tr[ρζT
†] = g(ζ̄ ) hold for any ζ ∈ � then

Tr[ρζ (T − g(ζ ))(T † − g(ζ̄ ))] = Tr[ρζT T †] − |g(ζ )|2 � DC
k

†
[g(ζ )]

(
JR

k

)−1
DC

k [g(ζ̄ )],

Tr[ρζ (T
† − g(ζ̄ ))(T − g(ζ ))] = Tr[ρζT

†T ] − |g(ζ )|2 � DC
k

†
[g(ζ )]

(
JL

k

)−1
DC

k [g(ζ̄ )].

If � = R, T is a self-adjoint operator, for which the existence of the POVM is trivial.
On the other hand, if � = C, one should consider normality and/or subnormality of T with
extension of the system (see [6]).
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A.1. Proofs of theorems 1 and 2

Theorem 1 for � = R and theorem 2 for � = C are proved by using the Schwartz’s inequality
in a similar way.

If, for any θ ∈ R, an self-adjoint operator T satisfies Tr[ρθT ] = g(θ), then

Trk×1
[
ρθL

S
k (T − g(θ))

] = Trk×1

[
ρθL

S
k + LS

k ρθ

2
(T − g(θ))

]
= Trk×1[Dk[ρθ ]T ] − g(θ) Trk×1[Dk[ρθ ] = Dk[g(θ)].

Let US and WS be column vectors of k + 1 operators and k + 1 scalars, respectively, given as

US :=
(

T − g(θ)

LS
k

)
, WS :=

(
1

−(
J S

k

)−1
Dk[g(θ)]

)
.

Since

ϒS := Trk+1×k+1[ρθU
S(US)†] =

(
V [T ] tDk[g(θ)]

Dk[g(θ)] J S
k

)

is non-negative where V [T ] := Tr[ρθT
2] − g(θ)2, it holds that

tWS(ϒS)−1WS = V [T ] − tDk[g(θ)]
(
J S

k

)−1
Dk[g(θ)] � 0.

Hence, we obtain theorem 1.
If, for any ζ ∈ C, an operator T satisfies Tr[ρζT ] = g(ζ ), then

TrK
[
ρζ (T − g(ζ ))

(
LR

k

)†] = TrK
[
(T − g(ζ ))ρζ

(
LL

k

)†]
= TrK

[
DC

k

†
[ρζ ]T

] − g(ζ ) TrK
[
DC

k

†
[ρζ ]

] = DC
k

†
[g(ζ )]

where K = k(k + 3)/2. Let UR and UL be column vectors of K + 1 = (k + 1)(k + 2)/2
operators, and let WR and WL be column vectors of K + 1 scalars, given as

UR :=
(

T − g(ζ )

LR
k

)
, UL :=

(
T − g(ζ )

LL
k

)
,

WR :=
(

1

−(
JR

k

)−1
DC

k [g(ζ̄ )]

)
, WL :=

(
1

−(
JL

k

)−1
DC

k [g(ζ̄ )]

)
.

Let V1 := Tr[ρζ T T †] − |g(ζ )|2 and V2 := Tr[ρζT
†T ] − |g(ζ )|2. Since

ϒR := TrK+1×K+1[ρζU
R(UR)†] =

(
V1[T ] DC

k

†
[g(ζ )]

DC
k [g(ζ̄ )] JR

k

)
,

ϒL := TrK+1×K+1[ULρζ (U
L)†] =

(
V2[T ] DC

k

†
[g(ζ )]

DC
k [g(ζ̄ )] JL

k

)

are non-negative, it holds that

(WR)†(ϒR)−1WR = V1[T ] − DC
k

†
[g(ζ )]

(
JR

k

)−1
DC

k [g(ζ̄ )] � 0

and

(WL)†(ϒL)−1WL = V2[T ] − DC
k

†
[g(ζ )]

(
JL

k

)−1
DC

k [g(ζ̄ )] � 0.

Hence, (8) and (9) of theorem 2 are satisfied, respectively.
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Appendix B. Proofs of theorems 3 and 4

Lemma 2. If P(α) := exp(−αᾱ/N) for α ∈ C, then

(α − ζ )m(ᾱ − ζ̄ )nP (α − ζ )|α〉〈α| =
(

N

N + 1

)m

(a − ζ )n(a† − ζ̄ )mP (α − ζ )|α〉〈α| (B.1)

=
(

N

N + 1

)n

|α〉〈α|(a − ζ )n(a† − ζ̄ )mP (α − ζ ). (B.2)

Proof. Since a = ∑∞
i=0

√
iei−1e

†
i and |α〉 = e−αᾱ/2 ∑

i α
i/

√
i!ei, a|α〉 = α|α〉 and

〈α|a† = ᾱ〈α|. Moreover, since

d

dα
|α〉 = − ᾱ

2
|α〉 + exp

(
−αᾱ

2

) ∞∑
i=0

i

α

αi

√
i!

ei

d

dᾱ
〈α| = −α

2
〈α| + exp

(
−αᾱ

2

) ∞∑
i=0

i

ᾱ

ᾱi

√
i!

e
†
i ,

we have

a†|α〉P(α) = exp(−αᾱ/2)

∞∑
i=0

i + 1

α

αi+1

√
(i + 1)!

ei+1P(α)

= |α〉
(

ᾱ − d

dα

)
P(α), (B.3)

〈α|aP (α) = exp(−αᾱ/2)

∞∑
i=0

i + 1

ᾱ

ᾱi+1

√
(i + 1)!

e
†
i+1P(α)

= |α〉
(

α − d

dᾱ

)
P(α) (B.4)

(for any smooth function P(α)). Recursively using these rules (B.3) and (B.4) with

d

dζ
P (α − ζ ) = ᾱ − ζ̄

N
P (α − ζ ) and

d

dζ̄
P (α − ζ ) = α − ζ

N
P (α − ζ ),

we obtain the results (B.1) and (B.2). �

Lemma 3. Let p and q be non-negative integers and let n := (p+q−1)(p+q+2)

2 + q + 1. If p � q,
the nth entry of a Type R operator LR

k is

min(p,q)∑
r=0

(−1)min(p,q)−r

(
max(p, q)

min(p, q) − r

)
min(p, q)!

r!

(a − ζ )r+max(0,q−p)(a† − ζ̄ )r+max(0,p−q)

Np(N + 1)r+max(0,q−p)
.

(B.5)

The nth entry of a Type L operator LL
k is

min(p,q)∑
r=0

(−1)min(p,q)−r

(
max(p, q)

min(p, q) − r

)
min(p, q)!

r!

(a − ζ )r+max(0,q−p)(a† − ζ̄ )r+max(0,p−q)

Nq(N + 1)r+max(0,p−q)
.

(B.6)



Bhattacharyya inequality for quantum state estimation 803

Proof. If p � q, the higher order derivative (dp+q/dpζ dq ζ̄ )ρζ is calculated as

1

πN

∫
α∈C

|α〉〈α| dp+q

dζ p dζ̄ q
exp

(
− (α − ζ )(ᾱ − ζ̄ )

N

)
d2α

= 1

πN

∫
α∈C

|α〉〈α| dp

dζ p

(
α − ζ

N

)q

exp

(
− (α − ζ )(ᾱ − ζ̄ )

N

)
d2α

= 1

πN

∫
α∈C

|α〉〈α|
(

dz

dζ

d

dz

)p (
z

ᾱ − ζ̄

)q

exp(−z) d2α

(z := (α − ζ )(ᾱ − ζ̄ )/N)

= 1

πN

∫
α∈C

|α〉〈α| (ᾱ − ζ̄ )p−q

(−N)p
exp

(
−|α − ζ |2

N

)

×
p∑

r=0

(−1)r
(

q

p − r

)
p!

r!

( |α − ζ |2
N

)q−p+r

d2α. (B.7)

Similarly, if p � q,

dp+qρζ

dpζ dq ζ̄
= 1

πN

∫
α∈C

|α〉〈α| (α − ζ )q−p

(−N)q
exp

(
−|α − ζ |2

N

)

×
q∑

r=0

(−1)r
(

p

q − r

)
q!

r!

( |α − ζ |2
N

)p−q+r

d2α. (B.8)

By applying lemma 2 to (B.7) and (B.8), the nth entry of LR
k is obtained as



p∑
r=0

(−1)p−r

(
q

p − r

)
p!

r!

(a − ζ )q−p+r (a† − ζ̄ )r

Np(N + 1)q−p+r
if p � q,

q∑
r=0

(−1)q−r

(
p

q − r

)
q!

r!

(a − ζ )r(a† − ζ̄ )p−q+r

Np(N + 1)r
if p � q,

which means (B.5). Likewise, the nth entry of LL
k is



p∑
r=0

(−1)p−r

(
q

p − r

)
p!

r!

(a − ζ )q−p+r (a† − ζ̄ )r

Nq(N + 1)r
if p � q,

q∑
r=0

(−1)q−r

(
p

q − r

)
q!

r!

(a − ζ )r(a† − ζ̄ )p−q+r

Nq(N + 1)p−q+r
if p � q,

which means (B.6). �

Lemma 4. Suppose that p, q, r, s are non-negative integers and that p + q and r + s are not
larger than k. Let

m := (p + q − 1)(p + q + 2)

2
+ q + 1, n := (r + s − 1)(r + s + 2)

2
+ r + 1.

Then, the (m, n)th entry of JR
k is

dp+q+r+s

dκp dκ̄q dλs dλ̄r
exp

(
κλ̄

N
+

κ̄λ

N + 1

)∣∣∣∣
κ=λ=0

=
{

p!q!
Np(N+1)q

if m = n,

0 if m �= n,
(B.9)

and the (m, n) th entry of JL
k is

dp+q+r+s

dκp dκ̄q dλs dλ̄r
exp

(
κλ̄

N + 1
+

κ̄λ

N

)∣∣∣∣
κ=λ=0

=
{

p!q!
Nq(N+1)p

if m = n,

0 if m �= n.
(B.10)
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Proof. Since ρζ is invertible under the assumption N > 0, LR
k = ρ−1

ζ DC
k [ρζ ] is a Type R

operator for any ζ ∈ C. We have

JR
k = TrK×K

[
ρζL

R
k

(
LR

k

)†]
= TrK×K

[
ρ−1

ζ DC
k [ρζ ]DC

k

†
[ρζ ]

]
and hence the (m, n)th entry is

dp+q+r+s

dκp dκ̄q dλs dλ̄r
Tr

[
ρ−1

ζ ρζ+κρζ+λ

]∣∣∣∣
κ=λ=0

. (B.11)

The parameter ζ in (B.11) can be set to zero because

Tr
[
ρ−1

ζ ρζ+κρζ+λ

] = Tr
[
Uρ−1

0 U−1UρκU
−1UρλU

−1
] = Tr

[
ρ−1

0 ρκρλ

]
where U := exp(ζa† − ζ̄ a). This can be calculated as

Tr
[
ρ−1

0 ρκρλ

] = N + 1

(πN)2
Tr

[ ∞∑
n=0

(
N + 1

N

)n

ene
†
n ·

∫
α∈C

|α〉〈α| exp

(
−|α − κ|2

N

)
d2α

·
∫

β∈C

|β〉〈β| exp

(
−|β − λ|2

N

)
d2β

]

= N + 1

(πN)2

∫
α∈C

∫
β∈C

exp

(
−|α − κ|2

N
− |β − λ|2

N
+

N + 1

N
αβ̄

− αᾱ − ββ̄ + ᾱβ

)
d2α d2β

= N + 1

(πN)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

(
−t (v − Q−1µ)Q(v − Q−1µ)

+
κλ̄

N
+

κ̄λ

N + 1

)
dx dy dz dw (B.12)

where v := t (x, y, z,w), µ := t (Re(κ), Im(κ), Re(λ), Im(λ))/N and

Q :=




1/N + 1 0 −1/(2N) − 1 −√−1/(2N)

0 1/N + 1
√−1/(2N) −1/(2N) − 1

−1/(2N) − 1
√−1/(2N) 1/N + 1 0

−√−1/(2N) −1/(2N) − 1 0 1/N + 1


 .

Since Q > 0 and det Q = (N + 1)2/N4, (B.12) is equal to

exp

(
κλ̄

N
+

κ̄λ

N + 1

)
so the result (B.9) is obtained.

Similarly, LL
k can be given as LL

k = DC
k [ρζ ]ρ−1

ζ . Hence,

JL
k = TrK×K

[
LL

k ρζ

(
LL

k

)†] = TrK×K

[
DC

k [ρζ ]ρ−1
ζ DC

k

†
[ρζ ]

]
so (B.10) holds. �

B.1. Proof of theorem 3

B.1.1. Optimality of (10) for the case g(θ) = θ2. First, we formally extend the real parameter
θ of ρθ to the complex parameter ζ = θ +

√−1η ∈ C. Then, the derivative (d/dθ)kρθ can be
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considered as (d/ζ + d/dζ̄ )kρζ . A Type S operator LS
2 = t (L1, L2) is given as a solution to

the equation

dk

dθk
ρθ =

(
d

dζ
+

d

dζ̄

)k

ρζ = ρθLk + Lkρθ

2
(B.13)

and Lk = L
†
k for k = 1, 2. Let

Lk :=
∑
i,j

ci,j (a
ia†j + aja†i ) (ci,j ∈ R).

Since each coefficient for aia†j in equation (B.13) should be zero, the solution is obtained as

L1 = 2

2N + 1
(a + a† − 2θ)

= 2
N + 1

2N + 1

a − θ

N + 1
+ 2

N

2N + 1

a† − θ

N

= 2
N + 1

2N + 1
M0,1 + 2

N

2N + 1
M1,0,

L2 = 2(a − θ)2 + (a† − θ)2

N2 + (N + 1)2
+

2(a − θ)(a† − θ)

N(N + 1)
− 2

N

= 2(N + 1)2

N2 + (N + 1)2

(
a − θ

N + 1

)2

+
2N2

N2 + (N + 1)2

(
a† − θ

N

)2

+ 2

(
(a − θ)(a† − θ)

N(N + 1)
− 1

N

)

= 2(N + 1)2

N2 + (N + 1)2
M0,2 +

2N2

N2 + (N + 1)2
M2,0 + 2M1,1

where Mi,j are Type R operators out of LR
2 = t (M1,0,M0,1,M2,0,M1,1,M0,2). As the inner

product JR
2 of LR

2 is given in lemma 4, J S
2 is obtained as

J S
2 =

(
4

2N+1 0
0 8

N2+(N+1)2 + 4
N(N+1)

)
.

Since T of (10) is equal to (2θ, 2)
(
J S

2

)−1
LS

2 +θ2, it attains the equality (7), hence it is uniformly
optimum.

B.1.2. Non-existence of uniformly optimum estimator for the case g(θ) = θ3. Since, for all
non-negative integers m, n, the leading term of Tr[ρθa

m(a†)n] is θmθ̄n, the form of an unbiased
estimator for θ3 of a polynomial form of the creation/annihilation operators is given in the
form

T = u(a3 + a†3) + v(a†2a + a†a2) + w(a2 + a†2) + xa†a + y(a + a†) + z.

Using the characteristic function

Tr
[
ρθeλa†

eλ̄a
] = 1

πN

∫
α∈C

exp

(
λᾱ + λ̄α − |α − θ |2

N

)
d2α

= exp((λ + λ̄)θ + N |λ|2),
we have

Tr[ρθT ] = 2θ3u + (2θ3 + 4θ(N + 1))v + 2θ2w + (θ2 + N + 1)x + 2θy + z.
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The unbiasedness condition tbr[ρθT ] = θ3 requires that

u = 1

2
− v, w = −x

2
, y = −2(N + 1)v, z = −(N + 1)x.

It will be shown that, for any fixed θ ∈ �, the variance is minimized if

u = N(N + 1)

2(4N2 + 4N + 3)
, v = 3

N2 + N + 1

2(4N2 + 4N + 3)
,

w = − 3θ

2(2N + 1)2(4N2 + 4N + 3)
, x = 3θ

(2N + 1)2(4N2 + 4N + 3)
,

y = −3
(N2 + N + 1)(N + 1)

4N2 + 4N + 3
, z = −3(N + 1)θ

(2N + 1)2(4N2 + 4N + 3)
.

(B.14)

Since w, x and z depend on θ , there is no unbiased estimator uniformly minimizing the
variance.

By the same way as the previous proof, the third entry of LS
3 = t (L1, L2, L3) can be

obtained as

L3 = 2
(a − θ)3 + (a† − θ)3

N3 + (N + 1)3
+ 6

(a − θ)2(a† − θ) + (a − θ)(a† − θ)2

N(N + 1)(2N + 1)
− 12

a + a† − 2θ

N(2N + 1)

= 2(N + 1)3

N3 + (N + 1)3

(a − θ)3

(N + 1)3
+

2N3

N3 + (N + 1)3

(a† − θ)3

N3

+
6(N + 1)2N

N(N + 1)(2N + 1)

(
(a − θ)2(a† − θ)

(N + 1)2N
− 2(a − θ)

(N + 1)N

)

+
6(N + 1)N2

N(N + 1)(2N + 1)

(
(a − θ)(a† − θ)2

(N + 1)N2
− 2(a† − θ)

N2

)

= 2(N + 1)3

N3 + (N + 1)3
M0,3 +

2N3

N3 + (N + 1)3
M3,0

+
6(N + 1)2N

N(N + 1)(2N + 1)
M1,2 +

6(N + 1)N2

N(N + 1)(2N + 1)
M2,1

where Mi,j are Type R operators out of LR
3 = t (M1,0, . . . ,M3,0,M2,1,M1,2,M0,3). Using

lemma 4, we have

J S
3 =


 J S

2
0
0

0 0 24
N3+(N+1)3 + 72

N(N+1)(2N+1)


 .

The unbiased estimator satisfying formulae in (B.14) is equal to T = tD3[θ3]
(
J S

3

)−1
LS

3 + θ3,
which attains the lower bound (8) for the variance at each θ .

B.2. Proof of theorem 4

B.2.1. The holomorphic case dg/dθ̄ = 0. Consider the monomial case g(θ) = ζ k . The
column vector DC

k [ζ̄ k] is given as

DC
k [ζ̄ k] =

t(
0, kζ̄ k−1, 0, 0, k(k − 1)ζ̄ k−2, 0, . . . , 0,

k!

j !
ζ̄ j , 0, . . . , 0, k!

)
.

Lemma 4 shows that JR
k is a diagonal matrix of the form

JR
k = diag

(
1

N
,

1

N + 1
,

2

N2
,

1

N(N + 1)
,

2

(N + 1)2
,

3!

N3
, . . . ,



Bhattacharyya inequality for quantum state estimation 807

(j − 1)!

N(N + 1)j−1
,

j !

(N + 1)j
,
(j + 1)!

Nj+1
, . . . ,

(k − 1)!

N(N + 1)k−1
,

k!

(N + 1)k

)
.

The system is extended with the ancilla space K, and the state is set as ρζ ⊗ f0f
†
0 . The

annihilation operator on K is denoted by b. A Type R operator LR
k on the extended system is

LR
k =

t(a† − ζ̄

N
,
a + b† − ζ

N + 1
,
(a† − ζ̄ )2

N2
,
(a + b† − ζ )(a† − ζ̄ )

N(N + 1)
,
(a + b† − ζ )2

(N + 1)2
,

(a† − ζ̄ )3

N3
, . . . ,

(a + b† − ζ )j−1(a† − ζ̄ )

N(N + 1)j−1
,
(a + b† − ζ )j

(N + 1)j
,
(a† − ζ̄ )j+1

Nj+1
, . . . ,

(a + b† − ζ )k−1(a† − ζ̄ )

N(N + 1)k−1
,
(a + b† − ζ )k

(N + 1)k

)
.

Define an operator Tk as

Tk := DC
k

†
[ζ k]

(
JR

k

)−1
LR

k + ζ k =
k∑

j=0

(
k

j

)
ζ k−j (a + b† − ζ )j = (a + b†)k.

Since TrK×1
[
ρζ L

R
k

] = DC
k [Tr[ρζ ]] = DC

k [1] = 0, Tr[ρζTk] = ζ k . Hence, Tk is uniformly
optimum unbiased estimator for ζ k . For the general holomorphic case g(ζ ) = ∑

k ckθ
k

(ck ∈ C), the estimator T := g(a + b†) = ∑
k ckTk is unbiased and uniformly optimum.

B.2.2. The antiholomorphic case dg/dθ = 0. Consider the monomial case g(θ) = ζ̄ k . The
column vector DC

k [ζ k] is given as

DC
k [ζ k] =

t(
kζ k−1, 0, k(k − 1)ζ k−2, 0, . . . , 0,

k!

j !
ζ j , 0, . . . , 0

)
.

By lemma 4, JL
k is a diagonal matrix of the form

JL
k = diag

(
1

N + 1
,

1

N
,

2

(N + 1)2
,

1

N(N + 1)
, . . . ,

(j − 1)!

Nj−1
,

j !

(N + 1)j
,

(j − 1)!

N(N + 1)j−1
, . . . ,

k!

Nk

)
.

For the annihilation operator b on the ancilla system for the extension ρζ ⊗ f0f
†
0 , a Type L

operator LL
k is

LL
k =

t(a† + b − ζ̄

N + 1
,
a − ζ

N
,
(a† + b − ζ̄ )2

(N + 1)2
,
(a − ζ )(a† + b − ζ̄ )

N(N + 1)
, . . . ,

(a − ζ )j−1

Nj−1
,
(a† + b − ζ̄ )j

(N + 1)j
,
(a − ζ )(a† + b − ζ̄ )j−1

N(N + 1)j−1
, . . . ,

(a − ζ )k−1(a† + b − ζ̄ )

Nk−1(N + 1)
,
(a − ζ )k

Nk

)
.

Define an operator Tk as

Tk := DC
k

†
[ζ̄ k]

(
JL

k

)−1
LL

k + ζ̄ k =
k∑

j=0

(
k

j

)
ζ k−j (a† + b − ζ̄ )j = (a† + b)k.

Since TrK×1
[
ρζ L

L
k

] = DC
k [Tr[ρζ ]] = DC

k [1] = 0, Tr[ρζ Tk] = ζ̄ k . Hence, Tk is
uniformly optimum unbiased estimator for ζ̄ k . For the general antiholomorphic case
g(ζ ) = ∑

k ckθ̄
k (ck ∈ C), the estimator T := g(a† +b) = ∑

k ckTk is unbiased and uniformly
optimum.
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B.2.3. The real-valued case g = g. By lemmas 3 and 4, Tm,n := DC
k

†
[cm,nζ

mζ̄ n](
JR

k

)−1
LR

m+n + ζmζ̄ n for k � m + n is

Tm,n = cm,n

n∑
p=0

m∑
q=0

m!n!ζm−q ζ̄ n−p

(m − q)!(n − p)!

Np(N + 1)q

p!q!

×




p∑
r=0

(−1)p−r

(
q

p − r

)
p!

r!

(a − ζ )q−p+r (a† − ζ̄ )r

Np(N + 1)q−p+r
(p � q)

q∑
r=0

(−1)q−r

(
p

q − r

)
q!

r!

(a − ζ )r(a† − ζ̄ )p−q+r

Np(N + 1)r
(p � q)

= cm,n

n∑
p=0

m∑
q=0

m!n!ζm−q ζ̄ n−p

(m − q)!(n − p)!

×




p∑
r=0

(−1)p−r (a − ζ )q−p+r (a† − ζ̄ )r

(p − r)!(q − p + r)!r!(N + 1)−p+r
(p � q)

q∑
r=0

(−1)q−r (a − ζ )r(a† − ζ̄ )p−q+r

(q − r)!(p − q + r)!r!(N + 1)−q+r
(p � q).

Tm,n does not depend on ζ ∈ C because dTm,n/dζ is equal to

cm,n

n∑
p=0

m−1∑
q=0

m!n!ζm−q−1ζ̄ n−p

(m − q − 1)!(n − p)!




p∑
r=0

(−1)p−r (a − ζ )q−p+r (a† − ζ̄ )r

(p − r)!(q − p + r)!r!(N + 1)−p+r
(p � q)

q∑
r=0

(−1)q−r (a − ζ )r(a† − ζ̄ )p−q+r

(q − r)!(p − q + r)!r!(N + 1)−q+r
(p > q).

− cm,n

n∑
p=0

m∑
q=1

m!n!ζm−q ζ̄ n−p

(m − q)!(n − p)!

×




p∑
r=0

(−1)p−r (a − ζ )q−p+r−1(a† − ζ̄ )r

(p − r)!(q − p + r − 1)!r!(N + 1)−p+r
(p < q)

q∑
r=1

(−1)q−r (a − ζ )r−1(a† − ζ̄ )p−q+r

(q − r)!(p − q + r)!(r − 1)!(N + 1)−q+r
(p � q)

= cm,n

n∑
p=0

m−1∑
q=0

m!n!ζm−q−1ζ̄ n−p

(m − q − 1)!(n − p)!

×




p∑
r=0

(−1)p−r (a − ζ )q−p+r (a† − ζ̄ )r

(p − r)!(q − p + r)!r!(N + 1)−p+r
(p � q)

q∑
r=0

(−1)q−r (a − ζ )r(a† − ζ̄ )p−q+r

(q − r)!(p − q + r)!r!(N + 1)−q+r
(p > q).

− cm,n

n∑
p=0

m−1∑
q ′=0

m!n!ζm−q ′−1ζ̄ n−p

(m − q ′ − 1)!(n − p)!
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×




p∑
r=0

(−1)p−r (a − ζ )q
′−p+r (a† − ζ̄ )r

(p − r)!(q ′ − p + r)!r!(N + 1)−p+r
(p � q ′)

q ′∑
r ′=0

(−1)q
′−r ′

(a − ζ )r
′
(a† − ζ̄ )p−q ′+r ′

(q ′ − r ′)!(p − q ′ + r ′)!r ′!(N + 1)−q ′+r ′ (p > q ′)

= 0,

where q ′ := q − 1 and r ′ := r − 1. Tm,n does not depend on ζ̄ because dTm,n/dζ̄ is equal to

cm,n

n−1∑
p=0

m∑
q=0

m!n!ζm−q ζ̄ n−p−1

(m − q)!(n − p − 1)!




p∑
r=0

(−1)p−r (a − ζ )q−p+r (a† − ζ̄ )r

(p − r)!(q − p + r)!r!(N + 1)−p+r
(p < q)

q∑
r=0

(−1)q−r (a − ζ )r(a† − ζ̄ )p−q+r

(q − r)!(p − q + r)!r!(N + 1)−q+r
(p � q).

− cm,n

n∑
p=1

m∑
q=0

m!n!ζm−q ζ̄ n−p

(m − q)!(n − p)!

×




p∑
r=1

(−1)p−r (a − ζ )q−p+r (a† − ζ̄ )r−1

(p − r)!(q − p + r − 1)!(r − 1)!(N + 1)−p+r
(p � q)

q∑
r=0

(−1)q−r (a − ζ )r(a† − ζ̄ )p−q+r−1

(q − r)!(p − q + r − 1)!r!(N + 1)−q+r
(p > q)

= cm,n

n−1∑
p=0

m∑
q=0

m!n!ζm−q ζ̄ n−p−1

(m − q)!(n − p − 1)!

×




p∑
r=0

(−1)p−r (a − ζ )q−p+r (a† − ζ̄ )r

(p − r)!(q − p + r)!r!(N + 1)−p+r
(p < q)

q∑
r=0

(−1)q−r (a − ζ )r(a† − ζ̄ )p−q+r

(q − r)!(p − q + r)!r!(N + 1)−q+r
(p � q).

− cm,n

n−1∑
p′=0

m∑
q=0

m!n!ζm−q ζ̄ n−p−1

(m − q)!(n − p − 1)!

×




p′∑
r ′=0

(−1)p
′−r ′

(a − ζ )q−p′+r ′
(a† − ζ̄ )r

′

(p′ − r ′)!(q − p′ + r ′)!r ′!(N + 1)−p′+r ′ (p′ < q)

q∑
r=0

(−1)q−r (a − ζ )r(a† − ζ̄ )p
′−q+r

(q − r)!(p′ − q + r)!r!(N + 1)−q+r
(p′ � q)

= 0,

where p′ := p − 1 and r ′ := r − 1. Therefore,

Tm,n = cm,nm!n!




p∑
r=0

(−1)p−raq−p+r (a†)r

(p − r)!(q − p + r)!r!(N + 1)−p+r
(p � q)

q∑
r=0

(−1)q−rar (a†)p−q+r

(q − r)!(p − q + r)!r!(N + 1)−q+r
(p � q)

= cm,n(N + 1)n
min(m,n)∑

r=0

(−1)min(m,n)−r

(
max(m, n)

min(m, n) − r

)



810 Y Tsuda

× min(m, n)!

r!

( a

N + 1

)r+max(0,n−m)

a†r+max(0,m−n)
.

Let g(ζ ) = ∑
m,n be a real-valued polynomial, namely, cm,n = cn,m. Let T := ∑

m,n cm,nTm,n.
Then, T is a self-adjoint observable. Since Trk×1

[
ρζ L

R
k

] = 0, Tr[ρζTm,n] = cm,nζ
mζ̄ n.

Hence, T is an unbiased estimator for g(ζ ). T attains the Type R lower bound because
T = DC

k

†
[g(ζ )]

(
JR

k

)−1
LR

k .

It can be shown in the same way that T = DC
k [g(ζ )]

(
JL

k

)−1
LL

k , so that T attains the
Type L lower bound too.
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